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Abstract. We study the scattering problem on a graph consisting of a line with 3 finite- 
length appendix. The two pans are coupled thmugh boundary conditions depending on t h e  
p m e t e r s ;  the motion on the line is free while the appendix suppotts a potential. The appendix 
bound states give m e  to a ladder of resonances, we construct the resolvent and solve the 
corresponding pole condition for a weak coupling. In gmeral. the condition only zdmits an 
analytic solution in particular cases. We find the pole positions numerically for a linear potential 
and show that the poles eventually return to the real axis when the coupling m e n o  increases. 

1. Introduction 

New developments in the fabrication of semiconductor microstructures are interesting not 
only in view of potential device applications, but simply because they give quantum 
mechanics certain classical features, namely they allow us to test its predictions in a variety 
of situations where it is us and not nature who chooses the shape of the playground. 
This particularly concerns scattering on graph-like structures-references to this subject 
are nowadays so plentiful that we shall restrict ourselves to only mentioning [4,5,9,11- 
13,15-171 as a small sample related to the contents of this paper. 

In the usual 
approximation, low-energy electrons are described as free particles with an effective mass 
moving in the spatial region (system of tubes) which form the microstructure. The resulting 
partial differential equations are mostly treated numerically; only a few systems allow us 
to draw more general conclusions. This is why one usually makes another simplification. 
If the ‘quantum wires’ under consideration are sufficiently thin, their transverse modes are 
well separated in energy and weakly coupled; then it is reasonable to use the one-mode 
approximation in which the wire system is replaced by the corresponding graph structure. 

In this paper we are going to discuss a very simple model describing a quantum particle 
which lives on a graph consisting of one finite and two semi-infinite links. A particular 
case is a line with a stub, or a segment connected to it at a point. Such a system has been 
considered recently by several authors. In [13] the transmission amplitude was derived for 
a particular choice of coupling between the line and the stub. The authors of 1171 extended 
this result to a two-parameter family of boundary conditions. This is important because 
it is natural to conjecture that the parameters are related to the geometly of the junction, 
which we usually do not know much about; recall that this intriguing mathematical problem 
remains open [lo]. 
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While simple conceptually, such systems are not easy to handle. 
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Here we are going to treat a more general three-parameter family of couplings. A more 
important generalization is that we consider the finite link of an arbitrary shape (we therefore 
call il an appendix) provided it is coupled to the line at only one point, and suppose that the 
particle is exposed to a general potential on it. It is not difficult to extend our results to the 
situation where the line also supports a potential, but for the sake of simplicity we refrain 
from doing that. One naturally expects the appendix bound states to give rise to resonances 
of the coupled system; we shall show that the model is completely solvable in the sense 
that the resonance pole positions can be found from a simple transcendental equation. 

Let us briefly summarize the contents of this paper. In the next section we describe the 
model and derive the transmission amplitude. The main results are contained in section 3. 
Using the Krein formula, we first derive an explicit expression for the resolvent of the 
Hamiltonian which yields the pole condition. We solve the latter perturbatively for a weak 
coupling. In general, it admits an analytic solution only in particular cases; we present an 
example showing that the resonance poles may not exist at all. Numerical analysis of pole 
trajectories has been performed for the case of a linear potential considered in [ 15,161, which 
is important from the viewpoint of applications. The results show, in particular, that the 
poles eventually return to the real axis when the coupling strength increases, independently 
of the intensity of the external field. 

2. Description of the model 

The graph we consider consists of a line to which we couple at a point (chosen to be x = 0) 
a curve of a finite length t (see figure 1). Consequenfly, the Hilbert state space of the 
problem will be ‘H := L2(R) @ L2(0, e); we will write its elements as columns $ = (i). 
The particle motion on the graph is governed by a Hamiltonian which acts as a standard 
Schrodinger operator 

( H @ h ( x )  = - f ” ( x )  ( H q f M X )  =( -ut ’+  VU)(X) (1) 

provided the connection point is not contained in the support of the wavefunction, x # 0. 
In the following we shall specify how the two parts of the graph are coupled. 

Here the function V is a potential which represents an input of the model. It can 
be generated, for example, by a homogeneous electric field perpendicular to the line. A 
particular case, which is of interest in connection with the T-graph studies mentioned in 
the introduction, is represented by a linear potential which corresponds to the case where 
the appendix is straight (a line segment). This is not the only possibility, however. The 
potential may come from another external field or from the geometry of the appendix itself. 
Recall that bends in thin tubes generate an attractive potential [8]; in the limit of zero radius 
it is just a negative multiple of the squared curvature. 

< Figure 1. A line with an appendix, 
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For the model the nature of V is irrelevant; throughout the paper suppose we only that 
it is a measurable real-valued function of &,CO, e )  having finite limits at both endpoints of 
the appendix; this means, in particular, that the corresponding deficiency indices are (2,2). 

2.1. Boundary conditions 

The problem of constructing self-adjoint Schrodinger operators on branching graphs was 
discussed extensively in [9] :  see also [ l ,  6,11,12]. The key idea was that restricting the sum 
of Hamiltonians of disconnected graph links to functions which vanish in the vicinity of the 
branching points yields an operator which is symmetric but not self-adjoint; the 'coupled' 
operators sought are then constructed as self-adjoint extensions. The most suitable way to 
describe them is local, i.e. through boundary conditions which have a transparent meaning 
as the requirement of probability flow conservation at the junctions. 

The analysis was performed for the case where the motion outside the branching is 
free: however, addition of a potential of the type described does not alter the boundary 
conditions. Among the operators on a three-link graph we choose the family of those 
having the wavefunction continuous between a pair of links [9, section 51; in the present 
case we shall suppose that the 'line component' f of @ is continuous at x = 0. Since we 
want to have parameters which would allow us to easily switch off the coupling between 
the line and the appendix, we linearly transform the mentioned conditions to the form 

f(O+) = f(O-) =: f(0) 
u(0) = 6 f (O)  + cu'(0) 
f'(O+) - f'(0-) = d f ( 0 )  - bu'(0) (2) 

u(e)  = 0 .  

We have added the Dirichlet condition at the outer end of the appendix. The coefficient 
matrix K = ( !*) is real; from the start we resmct our attention to Hamiltonians which 
are time-reversal invariant. The operator specified by the boundary conditions (2) will be 
denoted as H(K). 

The particular case of boundary conditions with fully continuous wavefunctions used 
by most authors corresponds to b = 1 and c = 0; we then have f(0-t) = f(0-) = u(0) 
and 

f'(O+) - f'(O-) + ~ ' ( 0 )  = d f ( 0 ) .  

The advantage of the boundary conditions (2) is that they allow us to disconnect the appendix 
without breaking the line; putting 6 = 0, we get have the &interaction Hamiltonian on the 
line, f'(O+) -f'(O-) = d f ( 0 )  (in particular, the free motion ford = O), while the appendix 
is described by the operator h, := -d2/dxz + V specified by the decoupled condition 

u(0) - cu'(0) = 0 (3) 
at the junction. Hence b is the parameter which controls the coupling between the two parts 
of the graph. 

2.2. Scanering 

The existence of the wave operators for the scattering system under consideration is easily 
established because-as we shall see below-the coupling represents a rank-2 perturbation 
in the resolvent, so the Katc-Rosenblum theorem applies [14, section XI.31. What is more 
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interesting. however, is the explicit form of the scattering matrix. To find it we take the 
following ansatz: 

P Exner and E 9ere;ovd 

where ut is a solution to -U" + V u  = k'u corresponding to the boundary conditions 
uc(Q = 0, unique up to a multiplicative constant. These functions should belong locally 
to the domain of the Hamiltonian so they have to satisfy the boundary conditions (2). This 
yields a system of equations for r. f and ,9 which is solved by 

-2ik(cu; - u,)(O) 

b2u;(0) + (d - 2ik)(cu; - ut)(O) 
t(k) = 

(4) b2u;(0) + d(cu; - ut) (O)  

b2u;(0) + (d - 2ik)(cu; - UC) (O)  ' 
r(k) = - 

For b = 0 we recover the standard &scattering reflection and transmission amplitudes 
[2, section 1.31. It is straightforward to check that the scattering matrix is unitary, 

It(k)lz + Ir(k)lz = 1. 

The transmission probability is 
4k'(c~;(O) - uc(0))' 

It(k)lz = (5) 
[(b2 + cd)u;(O) + d ~ c ( O ) ] ~  + 4k2(cu;(0) - ue(0))2 ' 

Examples of its behaviour will be given in section 3.3 below. 
Let us remark that due to the presence of the &interaction on the line, the system 

may have a bound state. We find it by replacing the line part in the above ansatz by 
f (x) = (Y e-'lxl. This leads to a system of equations which is solvable provided 

bzu;(0) + (d + 2K)(CU; - utf(0) = 0 
(the LHS is the denominator of (4) with k = iK). If 6 = 0, an isolated eigenvalue exists. 
provided d < 0, and equals -ad'; it remains isolated, at least for Ibl small enough. 

3. Resonance poles 

At this point, let us turn to the resonance scattering. If b = 0, the appendix has a simple 
purely discrete spectrum: the eigenvalues are positive and therefore embedded into the 
continuous spectrum of the line Hamiltonian. If the coupling is switched on, we expect 
them to turn into resonances. To confirm this conjamre and to find positions of the 
resonance poles, we need to find the resolvent of H(K). 

3.1. The resolvent 

Since all the operators H(K) are obtained as self-adjoint extensions of the same symmetric 
operator with the deficiency indices (2,2), the resolvent can be obtained easily from Krein's 
formula [Z, appendix A]. We denote by nQ the zero matrix and choose the corresponding 
decoupled Hamiltonian as a reference operator. The line part of the resolvent is then an 
integral operator with the kernel 

i 
2k (6) R] ( x ,  y :  z) = - ei'lx-yi 
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where k := d; conventionally we associate the upper half-plane, Imk t 0, with the 
‘physical’ sheet of the complex energy. On the other hand, the appendix resolvent kernel is 

where x,,  x <  means respectively the greater (smaller) of x ,  y ,  ut has been introduced above, 
uo is similarly a solution corresponding to the conditions uo(0) = cub(O), and W(u0, u t )  is 
the Wronskian of the two functions. In particular, if the appendix motion is free, V = 0, 
the last expression simplifies to 

More generally, if a q d  b are linearly independent solutions of -U “+  V u  = k2u, we can 
set 

U&) b(O)a(x) - a(O)b(*) u e ( ~ )  = b(!)a(x) - a(t)b(x). 

A particular case of interest concerns the case of a linear potential, V ( x )  = E x ,  where 

so 
E 

H 1 E l2I3 Wfuo, ut) = - (b(Oa(0) - a(W(0)) . 
According to Ekein’s formula, the resolvent kernel of H@) is a 2 x 2 matrix of the 

form 

(H(W - z ) - ’ ( ~ , Y )  = (HOG) - Z ) - I ( ~ V  Y )  + hjrF,(x)Fk(y) (10) 
j 4 . 2  

where Fj are vectors from the deficiency subspaces of the maximal common restriction of 
the two operators; these can be chosen, for example, as 

(when it is not necessary we will not indicate the dependence on 2).  To determine the 
coefficients hjk, we employ the standard procedure (see, for instance, [3,7]): the vector 
(3 = (H(K) - z)-’(:) should belong to the domain of H ( K )  for any (:) E H ,  hence, in 
particular, its components have to satisfy the boundary conditions (2). Denoting 

we get 
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where we have used the identity W(u0, u t )  = -u'(O)ur(O). Substituting these boundary 
values into (2) ,  we get a system of linear equations which is solved by 

1 1 1  = D(k)-I[b2u;(0) + d(cu; - ut)(O)] 

P Exner and E SereSovh 

with 

2k 
The last expression coincides up to a factor with the denominator in (4). Zeros of the 
function D determine singularitis of the resolvent 

If b = 0 the expression factorizes and solutions to D ( k )  = 0 are easily found. They 
correspond to the eigenvalues of h, specified by the condition (3) which are embedded 
in the continuous spectrum of the line Hamiltonian; for d # 0 we have, in addition, an 
imaginary solution referring to the (anti-)bound state of the &interaction. 

3.2. Weak coupling 

When the parameter Ibl which characterizes the coupling strength between the two parts 
of the graph is small the pole condition can be solved by means of the implicit function 
theorem. We have the following general result. 

Theorem. Let kn refer to the nth eigenvalue of h, and denote by xn the corresponding 
normalized eigenfunction. Under the assumptions stated above, the condition D ( k )  = 0 has 
for all sufficiently small Ib[ just one solution in the vicinity of k,  which is given by 

ProoJ 
expansion 

By a straightforward application of the implicit function theorem we get the 

provided the denominator is non-zero. To complete the proof we modify an argument used 
in [3]. Denote x := ut and let 4 be the solution to -U" + (V - z)u = 0 fulfilling the 
boundary conditions @(O) = 1 and b'(0) = 0. For z' # z we rewrite the last equation in 
the following inhomogeneous form: 

-U" + (V - z)u = (z' - z )u  

x ( x ,  z') = c, (z')x ( x ,  z )  + cz(z')$(x, z )  + (z' - Z M X ,  z) 

which can be solved by a variation of constants, 

where 
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(all the functions on the RHS refer to the complex energy z ) .  If we denote by h, the 
appendix Hamiltonian with the Neumann boundary condition at x = 0, then the last relation 
may be rewritten as g = ( h ,  - z ) - ' x .  so that g E D(h,) and g'(0, z )  = g(e,z) = 0. 

The spectra of the operators ho and h,  are disjoint; hence the function $(., z )  does nor 
satisfy the Dirichlet condition at x = e. At the same time, x (e, z )  = 0, by definition, and 
g(e. z )  = 0 as we have pointed out. This means that the function cz = 0 and the derivative 
of cx' - x with respect to the momentum at zn := ki can be expressed as 

In particular, the first term on the RHS vanishes in the limit x + 0 and, returning to the 
original notation, we anive at the required formula (12) and we get 

At the same we have justified the use of the implicit function theorem. D 
Notice that, for a non-zero 6, solutions to the pole condition lie in the lower complex half- 
plane as required. The relation (12) yields the weak-coupling expansion of the resonance 
pole positions: 

3.3. Pole trajectories 

If the coupling is not weak, the pole condition could be solved analytically only in particular 
cases. A notable example is the situation when the motion in the appendix is free and the 
decoupled operator is specified by the Dirichlet boundary condition, i.e. 

In this case the embedded eigenvalues are ki ,  where k, := nz/e and the equation D(k)  = 0 
reduces to tan(ke) = -$iS'. which is solved by 

V = O  and c = d = O .  (14) 

Hence the poles travel with the growing Jbl down in the k-plane following lines parallel 
to the imaginary axis. If Ibj = A the resolvent has no poles at all. For larger values of 
the coupling constant the poles reappear and move towards the real axis; however, their 
trajectories are now shifted and end in the limit ]bl -+ m at the points ?(n + 4). This 
is not surprising, because these values refer to eigenvalues of the operator h, with the 
Neumann condition at x = 0; notice that the boundary conditions (2) give, in the limit, the 
Hamiltonian of the graph decoupled into three parts: the appendix described by h, and two 
half-lines with the Dirichlet condition at the endpoints. In the z-plane, the trajectories are 
correspondingly parabolic curves; the poles move to the third quadrant and return following 
shifted parabolas. For small values of Ibl the first of the relations (15) gives 

nz ib2 
& E  kn(b) - - - + U(b4) 
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in, k (“1 
- Re k 

d=O 

-0.2 

= i o .  d=-1 
-0.3 

- 0 . 5  

Re k 

Figure 2. Pole trajectories in the k-plane for various values of the coefficients c md d as 
functions of the coupling pmmeter b, The starting value b = 0 is marked by full circles; the 
parameter runs from 0 to +m, with field strengths f a )  E = 0 and (b) E = 1. 

Figure 3. Pole trajectories in the k.plane for different E as functions of the coupling pnrameter 
b: the other coefficients are c = d = 0. 

which is consistent with the above theorem, because the nth Dirichlet eigenfunction is 

In the general case the pole condition has to be solved numerically. We shall do that 
for the particular case of a linear potential, V ( x )  = Ex;  the length of the stub is chosen as 
e = 5. Figures 2 and 3 illustrate the pole trajectories for several values of the parameters. 

X ” @ )  = d m c o s ( k n x ) .  
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.r (") 

k 

Im k' (6)  
I b=O b=O - ._ 3 . 2  I 3 . 4  1 3 . 6  

-0.51 

Figure 4. 
tnjectoories for c = d = 0 and E = I. 

The correspondence between (a) the transmission coefficient and ( b )  the pole 

We see that the case described above is rather exceptional; Ihkk , (b ) l  is generically 
bounded, but its maximum value is different for different parameters. The 'starting points' 
b = 0 are marked by full circles; they correspond to the embedded eigenvalues and therefore 
they are only determined by the parameter c. On the other hand, the BC (2)  always turns 
into the Neumann BC at the decoupled end of the appendix as b + 00. Hence the points 
at which the trajectories end depend on E ,  but not on c and d, with the exception that the 
latter determine whether the pole will travel to the 'Neumann' embedded eigenvalue to the 
left or to the right of the original one. In figures 2(a) and 3 this switching of orientation 
refers to the sign of d and E ,  respectively; in the general case one could find the critical 
values of the parameters by computing the next term in the expansion (12). 

In the final figure we compare the pole trajectories with the transmission coefficient as 
a function of the coupling strength b. We see that while the points of zero transmission 
and reflection do'not move, being given by the embedded eigenvalues and their Neumann 
counterparts respectively, the transmission plot changes substantially. As one may expect, 
for weak coupling the resonances are nmow dips: the transmission is almost full with the 
exception of small neighbourhoods of the embedded eigenvalues. On the other hand, for 
large b the transmission is only possible in the vicinity of the 'Neumann' eigenvalues: recall 
that in this case the line is close to full (Dirichlet) decoupling. 

Acknowledgments 

The work was partially supported by grants AS no 148409 and GACR no 202-93-1314. 



8218 

References 

P Exner and E .fereSovd 

[I] Adamyan V M 1992 Scarering matrices far microschemer Op. Theoy Ad”. Appl. 59 1-10 
[2] Albeverio S, Gesztesy F, Hdegh-Krohn R and Holden H 1988 Solr,able Models in Quanrum Mechunics 

131 Antoine I-P, Exner P. Seba P and Shabani J 1994 A mathematical model of heavy-quarkonia decay Ann. 

[4] Avishai Y and Band Y 1990 Ballistic conductance of wide orifice Phys. Rev, B 41 3523-5 
[SI Berggren K-F and Ii Ben-Li 1991 Resonant Nnneling via quantum bound states in a classically unbound 

[6] Bulla W and Trenckler T 1990 The free Dinc opentor on compact and non-compact graphs J. Moth. Phys. 

[7j h e r  P 1991 A solvable model of two-channel scattering Helv. Phys. Acta 64 592-609 
[8] Exner P and Seba P 1989 Bound slates in c w e d  quantum waveguides J. Moth. Phys. 30 157&80 
[9] Emer P and Seba P 1989 Free quantum motion an B branching gnph Rep. Math, Phys. 28 7-26 

Schradinger Operators. Stmdard and Non-Standard (Singapore: World Scientific) pp 85-106 

J, Phys. A: Mal& Gen. 21 4009-19 

(in Russian) 

resonantly coupled cavities Appl. Phys. Lert. 61 1350-2 

AC&IUiC) 

Ph>?. 66 3892-906 

interference phenomena A w l .  Phys. Lett. 54 350-2 

(Heidelberg: Springer) 

Phys. 233 1-16 

system of crossed narrow channels Phys Rev. B 43 4760-3 

31 115763 

[IO] Exner P and $eh P’1989 Electrons in semicanductor microsmcNres a challenge IO opentor theorists 

[ I l l  Exner P, Seba Pand SioviZek P 1988 Quantum interference on graphs controlled by an extemal electric field 

[I21 G m i m e n k o  N I and Pavlov B S 1988 Scattering problem on non-compact graphs Teor. Mat, Fir. 74 345-59 

1131 Pomd W. Shao Zh-An and Lent C S 1992 Transmission rmnances and zeros in quanhlm waveguides with 

[I41 Reed M and Simon B 1979 Meth0d.r of Modem Marhemnrlcal Physics, Ill. Scattering T h e m  (New York 

[IS] Sols F, Macucci M, Ravaioli U and Hess K 1989 Theory for aquantum modulated transistor action J,  Appl. 

[I61 Sols F, Macucci M, Ravaioli U and Hess K 1989 On the possibility of transistor action based on quantum 
.. . 

[I71 Tek”  E and Bngwell P E 1993 Fano resonances in quasi-one-dimensiond quantum waveguides Phys. Rev. 
B 48 2553-9 


